Learning math: basic algebra

Table of contents

These are my solutions to the problems in the book Maths: A Student's Survival Guide.

Intro

Types of mathematical symbols (p. 101):

  • Symbols for numbers, quantities, variables, objects: 22 aa x2x^2 \sqrt{} log\log x1x_1 x2x_2 etc.
  • Symbols of operation: +÷+ - * \div \sum etc.
  • Symbols of relation: =ab= \neq \frac{a}{b} etc.

a,b,c,...a,b,c,... are usually constants.

x,y,z,...x,y,z,... are usually unknown quantities.

Identity:

x+0=xx0=xx1=xx/1=x x + 0 = x \\ x - 0 = x \\ x * 1 = x \\ x / 1 = x

Terminology

Remember: read through these every now and then to remember the terminology.

1.A.3

2x(x2y)+5y=2xx+2y+5y=x+7y 2x-(x-2y)+5y = \\ 2x-x+2y+5y = \\ x+7y

4(3a2b)6(2ab)=12a8b12a+6b=2b 4(3a-2b) - 6(2a-b) = \\ 12a-8b-12a+6b = \\ -2b

6a2(3a5b)(a+4b)=6a6a+10ba4b=6ba 6a - 2(3a-5b) - (a+4b) = \\ 6a-6a+10b-a-4b = \\ 6b-a

2xy(3x4y)5xy(2xy)=6x2y8xy210x2y+5xy2=4x2y3xy2 2xy(3x-4y) - 5xy(2x-y) = \\ 6x^2y - 8xy^2 - 10x^2y + 5xy^2 = \\ -4x^2y - 3xy^2

2a2(3a2ab)5ab(2a24ab)=6a34a3b10a3b+20a2b2=6a314a3b+20a2b2 2a^2(3a-2ab) - 5ab(2a^2 - 4ab) = \\ 6a^3 - 4a^3b - 10a^3b + 20a^2b^2 = \\ 6a^3 - 14a^3b + 20a^2b^2

3p(p+q)+2q(p3)=3ppq+2pq6q=4p7q+2pq -3p-(p+q)+2q(p-3) = \\ -3p-p-q+2pq-6q = \\ -4p-7q+2pq

Factoring

xy+xz=x(y+z) \boxed{xy + xz = x(y + z)}

xy+xx(y+0)xy+x=x(y+1) xy + x \neq x(y + 0) \\ xy + x = x(y + 1)

1.A.4

5a+10b=5(a+2b)3a2+2ab=a(3a+2b)3a26ab=3a(a2b)5xy+8xz=x(5y+8z)5xy10xz=5x(y2z)a2b+3ab2=ab(a+3b)4pq26p2q=2pq(2q3p)3x2y3+5x3y2=x2y2(3y+5x)4p2q+2pq26p2q2=2pq(2p+q3pq)2a2b3+3a3b26a2b2=a2b2(2b+3a6) 5a+10b = 5(a+2b) \\ 3a^2 + 2ab = a(3a + 2b) \\ 3a^2 - 6ab = 3a(a - 2b) \\ 5xy + 8xz = x(5y + 8z) \\ 5xy - 10xz = 5x(y - 2z) \\ a^2b + 3ab^2 = ab(a + 3b) \\ 4pq^2 - 6p^2q = 2pq(2q - 3p) \\ 3x^2y^3 + 5x^3y^2 = x^2y^2(3y + 5x) \\ 4p^2q + 2pq^2 - 6p^2q^2 = 2pq(2p + q - 3pq) \\ 2a^2b^3 + 3a^3b^2 - 6a^2b^2 = a^2b^2(2b + 3a - 6)

1.B.(a)

(2x+3y)(x+5y)=2x2+10xy+3xy+15y2=2x2+13y+15y2 (2x + 3y)(x + 5y) = \\ 2x^2 + 10xy + 3xy + 15y^2 = \\ 2x^2 + 13y + 15y^2

(3a5b)(2ab)=6a23ab10ab+5b2=6a213ab+5b2 (3a - 5b)(2a - b) = \\ 6a^2 - 3ab - 10ab + 5b^2 = \\ 6a^2 - 13ab + 5b^2

(3x+2)2=(3x+2)(3x+2)=9x2+6x+6x+22=9x2+12x+4 (3x + 2)^2 = \\ (3x + 2)(3x + 2) = \\ 9x^2 + 6x + 6x + 2^2 = \\ 9x^2 + 12x + 4

(2y5)2=(2y5)(2y5)=4y210y10y+25=4y220y+25 (2y - 5)^2 = \\ (2y - 5)(2y - 5) = \\ 4y^2 - 10y - 10y + 25 = \\ 4y^2 - 20y + 25

(2p2+3pq)(q22pq)=2p2q24p3q+3pq36p2q2=4p2q24p3q+3pq3 (2p^2 + 3pq)(q^2 - 2pq) = \\ 2p^2q^2 - 4p^3q + 3pq^3 - 6p^2q^2 = \\ -4p^2q^2 - 4p^3q + 3pq^3


Factoring by grouping

x2+9x+14=x2+2x+7x+14=(x2+2x)+(7x+14)=x(x+2)+7(x+2) x^2 + 9x + 14 = \\ x^2 + 2x + 7x + 14 = \\ (x^2 + 2x) + (7x + 14) = \\ x(x + 2) + 7(x + 2)

Now (x+2)(x + 2) is shared by both summands, and can be factored further:

(x+2)(x+7) (x + 2)(x + 7)

This is easier to see if we say that y=(x+2)y = (x + 2). Then, if we substitute (x+2)(x + 2) with yy:

x(x+2)+7(x+2)=xy+7y=y(x+7)=(x+2)(x+7) x(x + 2) + 7(x + 2) = \\ xy + 7y = \\ y(x + 7) = \\ (x + 2)(x + 7)

The process

The function ax2+bx+c\boxed{ax^2 + bx + c} can be factored by finding values p and q, so that pq=ac\boxed{pq = ac} and p+q=b\boxed{p+q = b} (or when c is negative, find pq=b\boxed{p-q = b}).

Above these values were 2 and 7, which is why we split 9x9x into 2x+7x2x + 7x.

Remember: when factoring trinomials, rather than memorising shortcuts (e.g. the "ac" method), make sure you can always factor by grouping. Factoring by grouping is a reliable way especially when a>1a > 1.

  1. Find which pqpq would give you acac
  2. Split bb into pp and qq
  3. Then group. Then factor further.

6x27x+26x2(3x+4x)+2Split6x23x4x+2(6x23x)+(4x+2)Group3x(2x1)+2(2x+1)Factor3x(2x1)+2(1)(2x1)Factor3x(2x1)2(2x1)(2x1)(3x2)Factor 6x^2 - 7x + 2 \\ 6x^2 - (3x + 4x) + 2 \qquad \text{Split} \\ 6x^2 - 3x - 4x + 2 \\ (6x^2 - 3x) + (-4x + 2) \qquad \text{Group} \\ 3x(2x - 1) + 2(-2x + 1) \qquad \text{Factor} \\ 3x(2x - 1) + 2(-1)(2x - 1) \qquad \text{Factor} \\ 3x(2x - 1) - 2(2x - 1) \\ (2x - 1)(3x - 2) \qquad \text{Factor}


y2+8y+12=(y+2)(y+6)x2+8x+16=(x+4)(x+4)=(x+4)2p2+13p+22=(p+2)(p+11) y^2 + 8y + 12 = (y + 2)(y + 6) \\ x^2 + 8x + 16 = (x + 4)(x + 4) = (x + 4)^2 \\ p^2 + 13p + 22 = (p + 2)(p + 11)


The "ac" method of factoring is "just a fancy way of factoring by grouping"

pq=acp+q=b pq = ac \\ p+q = b

Therefore:

ax2+bx+c=ax2+(p+q)x+c=Substituted b with (p + q)ax2+px+qx+c=(ax2+px)+(qx+c)=x(ax+p)+(qx+c)=Factored out x, i.e. divided by xax(x+p/a)+(qx+c)=Factored out aax(x+p/a)+q(x+c/q)Factored out q ax^2 + bx + c = \\ ax^2 + (p + q)x + c = \qquad \text{Substituted b with (p + q)} \\ ax^2 + px + qx + c = \\ (ax^2 + px) + (qx + c) = \\ x(ax + p) + (qx + c) = \qquad \text{Factored out x, i.e. divided by x} \\ ax(x + p/a) + (qx + c) = \qquad \text{Factored out a} \\ ax(x + p/a) + q(x + c/q) \qquad \text{Factored out q}

But this can be factored further.

pq=acpq = ac. Therefore:

p=ac/qDivide both sides by qp/a=c/qDivide both sides by a p = ac/q \qquad \text{Divide both sides by q} \\ p/a = c/q \qquad \text{Divide both sides by a}

Therefore

(x+p/a)=(x+c/q)(x + p/a) = (x + c/q)

which allows us to factor further:

ax(x+p/a)+q(x+c/q)=(ax+q)(x+p/a) ax(x + p/a) + q(x + c/q) = \\ \boxed{(ax + q)(x + p/a)}

Example:

2x2+7x+3a=2c=3b=7p+q=7p+q=bp=6q=1ac=23=6pq=61=6pq=ac 2x^2 + 7x + 3 \\ a = 2 \\ c = 3 \\ b = 7 \qquad p + q = 7 \qquad p+q = b \\ p = 6 \\ q = 1 \\ ac = 2 * 3 = 6 \qquad pq = 6 * 1 = 6 \qquad pq=ac \\

2x2+7x+3=(ax+q)(x+p/a)=(2x+1)(x+6/2)=(2x+1)(x+3) 2x^2 + 7x + 3 = \\ \boxed{(ax + q)(x + p/a)} = \\ (2x + 1)(x + 6/2) = \\ (2x + 1)(x + 3)

Therefore, to use the "ac" method, find p and q and then divide one of them with a, and place a to the opposite group:

(ax+q)Place a here  (x+p/a)Divide by a here \boxed{\underbrace{(ax + q)}_{\text{Place a here }}\space\underbrace{(x + p/a)}_{\text{Divide by a here}}}


1.B.(a) cont.

3a2+16a+5=(3a+1)(a+5) 3a^2 + 16a + 5 = (3a + 1)(a + 5)

3b2+10b+7=p and q are 3 or 7 here3b2+3b+7b+7=(3b+q)(b+p/a)=Is p 3 or 7? Which of 3 and 7 can be divided by a?(3b+7)(b+1)Only 3 can be divided by a. Therefore q is 7. 3b^2 + 10b + 7 = \qquad \text{p and q are 3 or 7 here} \\ 3b^2 + 3b + 7b + 7 = \\ (3b + q)(b + p/a) = \qquad \text{Is p 3 or 7? Which of 3 and 7 can be divided by a?} \\ (3b + 7)(b + 1) \qquad \text{Only 3 can be divided by a. Therefore q is 7.}

5x2+8x+3=(5x+3)(x+1) 5x^2 + 8x + 3 = (5x + 3)(x + 1)


Next some functions with the form ax2+bxc\boxed{ax^2 + bx - c}. c is negative, so these will factorise into an function like (x+y)(xz)\boxed{(x + y)(x - z)}. We need to find p and q such that pq=ac\boxed{pq = ac} and, importantly, pq=b\boxed{p - q = b}, because c is negative.

x2+x2=(x+1)(x2)p and q are 1 or 2 x^2 + x - 2 = (x + 1)(x - 2) \qquad \text{p and q are 1 or 2}

2x2+10x3x15=(2x2+10x)+(3x15) 2x^2 + 10x - 3x - 15 = \\ (2x^2 + 10x) + (-3x - 15)

2a2+a15=2a2+(65)a15p and q are 6 and 5=2a2+6a5a15=(2a2+6a)+(5a15)=2a(a+3)+5(a3)Can we make these positive?=2a(a+3)5(a+3)=(2a5)(a+3) \begin{aligned} 2a^2 + a - 15 &= 2a^2 + (6 - 5)a - 15 \quad \text{p and q are 6 and 5} \\ &= 2a^2 + 6a - 5a - 15 \\ &= (2a^2 + 6a) + (-5a - 15) \\ &= 2a(a + 3) + 5(-a - 3) \quad \text{Can we make these positive?} \\ &= 2a(a + 3) - 5(a + 3) \\ &= (2a - 5)(a + 3) \end{aligned}

I want to see if turning +5(a3)+5(-a - 3) into 5(a+3)-5(a + 3) was allowed above:

a=15(a3)=515=205(a+3)=515=20 a = 1 \\ 5(-a - 3) = -5 - 15 = -20 \\ -5(a + 3) = -5 - 15 = -20

Looks like it. (This is the anticommutative property of subtraction.)

2x2+5x12=(2x3)(x+4)p2q2=(p+q)(pq)Difference of two squares 2x^2 + 5x - 12 = (2x - 3)(x + 4) \\ p^2 - q^2 = (p + q)(p - q) \qquad \boxed{\text{Difference of two squares}}


Next some functions with the form ax2bx+c\boxed{ax^2 - bx + c}. c is positive, so these will factorise into an function like (xy)(xz)\boxed{(x - y)(x - z)}. We need to find p+q=b\boxed{p+q = b} because c is positive.

6y219y+10=Are p and q 4 and 15?4/6NCannot divide 4 by a15/6NCannot divide 15 by a. Wat do? 6y^2 - 19y + 10 = \qquad \text{Are p and q 4 and 15?} \\ 4/6 \notin \natnums \qquad \text{Cannot divide 4 by a} \\ 15/6 \notin \natnums \qquad \text{Cannot divide 15 by a. Wat do?}


Well, I can kind of hack my way through by trying different values for a, b, c and d in

(ayb)(cyd)(ay - b)(cy - d),

and finally end up with:

6y219y+10=(3y2)(2y5)Correct 6y^2 - 19y + 10 = (3y - 2)(2y - 5) \qquad \text{Correct}

How can I find this easier?

ac=pq=60b=p+q=15+4 ac = pq = 60 \\ b = p + q = 15 + 4

6y219y+10=6y2(15+4)y+10=6y2(15y+4y)+10=6y215y4y+10=(6y215y)(4y+10)=Be careful when grouping[note 1](6y215y)+(4y+10)=(6y215y)(4y10)=Can we do this?[note 2]3y(2y5)2(2y5)=3y(2y5)+2(2y5)=Found factors 3y and -23y(2y5)2(2y5)=(3y2)(2y5) 6y^2 - 19y + 10 = \\ 6y^2 - (15 + 4)y + 10 = \\ 6y^2 - (15y + 4y) + 10 = \\ 6y^2 - 15y - 4y + 10 = \\ \cancel{(6y^2 - 15y) - (4y + 10)} = \quad \text{Be careful when grouping}^{\text{[note 1]}} \\ (6y^2 - 15y) + (-4y + 10) = \\ \cancel{(6y^2 - 15y) - (4y - 10)} = \quad \text{Can we do this?}^{\text{[note 2]}} \\ \cancel{3y(2y - 5) - 2(2y - 5)} = \\ 3y(2y - 5) + -2(2y - 5) = \quad \text{Found factors 3y and -2} \\ 3y(2y - 5) - 2(2y - 5) = \\ (3y - 2)(2y - 5)

Remember: once you have found p and q, you can always "go the long way" and factor by grouping, rather than try to use the "ac" method (which would be a shortcut).

[Note 1] Remember: be careful when grouping operands, so that you preserve their signs:

102+3=1110+2+3=1110(2+3)11Remember: subtraction isn’t associative10+(2+3)=11But addition is(10+2)+3=11 10 - 2 + 3 = 11 \\ 10 + -2 + 3 = 11 \\ 10 - (2 + 3) \neq 11 \quad \boxed{\text{Remember: subtraction isn't associative}} \\ 10 + (-2 + 3) = 11 \quad \text{But addition is} \\ (10 + -2) + 3 = 11

ABA - B is generally treated as a shorthand notation for the addition A+(B)A + (-B). Thus, ABA - B contains two terms, namely AA and B-B. This allows an easier use of associativity and commutativity.

[Note 2] Let's try:

a+(bx+c)=a(bxc)?a=2b=3c=7x=12+(3+7)=62(37)=6 a + (-bx + c) = a - (bx - c)? \\ a = 2 \\ b = 3 \\ c = 7 \\ x = 1 \\ 2 + (-3 + 7) = 6 \\ 2 - (3 - 7) = 6

Looks like we can.

a+(b+c)=a(bc) a + (-b + c) = a - (b - c)

Looks like this is the anticommutative property.

(ab)=(a+b) \boxed{(a - b) = -(-a + b)}


(Trivia: division is only right-distributive, not left-distributive:)

a/(b+c)a/b+a/c(a+b)/c=a/c+b/c a / (b+c) \neq a/b + a/c \\ (a+b) / c = a/c + b/c


4x281y2=(2x+9y)(2x9y)Difference of two squares 4x^2 - 81y^2 = (2x + 9y)(2x - 9y) \quad \text{Difference of two squares} \\

6x219x+10=(6x24x)+(15x+10)=2x(3x2)+5(3x+2)=2x(3x2)5(3x2)=(2x5)(3x2) \begin{aligned} 6x^2 - 19x + 10 &= (6x^2 - 4x) + (-15x + 10) \\ &= 2x(3x - 2) + 5(-3x + 2) \\ &= 2x(3x - 2) - 5(3x - 2) \\ &= (2x - 5)(3x - 2) \end{aligned}

4x212x+9=(4x26x)+(6x+9)=2x(2x3)3(2x3)=(2x3)(2x3)=(2x3)2 4x^2 - 12x + 9 = \\ (4x^2 - 6x) + (6x + 9) = \\ 2x(2x - 3) - 3(2x - 3) = \\ (2x - 3)(2x - 3) = \\ (2x - 3)^2

    1.B.(b)

    The distributive property:

    (a+b)(c+d)=(c(a+b)+d(a+b))=ac+bc+ad+bd \boxed{(a+b)(c+d) = (c(a+b) + d(a+b)) = ac + bc + ad + bd}

    The total area of the rectangle(a+b)(c+d) \boxed{\text{The total area of the rectangle}} \\ (a+b)(c+d)

    (a+b)2=(a+b)(a+b)=a2+2ab+b2 The diagram shows that (a+b)2a2+b2 (a+b)^2 = (a+b)(a+b) = a^2 + 2ab + b^2 \\ \text{ } \\ \text{The diagram shows that }(a + b)^2 \neq a^2 + b^2

    Difference of two squares.Remember: make sure you’re able to spot these in the wild!(a+b)(ab)=a2ab+abb2=a2b2 \boxed{\text{Difference of two squares.}} \\ \text{Remember: make sure you're able to spot these in the wild!} \\ (a+b)(a-b) = \\ a^2 - ab + ab - b^2 = \\ a^2 - b^2

    See also https://en.wikipedia.org/wiki/Difference_of_two_squares#Geometrical_demonstrations.

    Remember: you might sometimes see expressions like x23x^2 - 3. This is also a difference of two squares (in disquise), and can be factored into (x+3)(x3)(x + \sqrt{3})(x - \sqrt{3}).

    1.B.1

    (x+2)(x+3)=x2+5x+6(a+3)(a4)=a2a12(x2)(x3)=x25a+6(p+3)(2p+1)=2p2+7p+3(3x2)(3x+2)=9x222Difference of two squares(2x3y)(x+2y)=2x2+4xy3xy+6y2=2x2+xy+6y2(3a2b)(2a5b)=6a219b+10b2(3x+4y)2=(3x+4y)(3x+4y)=9x2+24xy+16y2(3x4y)2=(3x4y)(3x4y)=9x224xy+16y2(3x+4y)(3x4y)=9x216y2Difference of two squares(2p2+3pq)(5p+3q)=10p3+6p2q+15p2q+9pq2=10p3+21p2q+9pq2(2abb2)(a23ab)=2a3b6a2b2a2b2+3ab3=2a3b7a2b2+3ab3(a+b)(a2ab+b2)=a3a2b+ab2+a2bab2+b3=a3+b3(ab)(a2+ab+b2)=a3+a2b+ab2a2bab2b3=a3b3 (x + 2)(x + 3) = x^2 + 5x + 6 \\ (a + 3)(a - 4) = a^2 - a - 12 \\ (x - 2)(x - 3) = x^2 - 5a + 6 \\ (p + 3)(2p + 1) = 2p^2 + 7p + 3 \\ (3x - 2)(3x + 2) = 9x^2 - 2^2 \quad \text{Difference of two squares} \\ (2x - 3y)(x + 2y) = 2x^2 + 4xy - 3xy + 6y^2 = 2x^2 + xy + 6y^2 \\ (3a - 2b)(2a - 5b) = 6a^2 - 19b + 10b^2 \\ (3x + 4y)^2 = \boxed{(3x + 4y)(3x + 4y) = 9x^2 + 24xy + 16y^2} \\ (3x - 4y)^2 = \boxed{(3x - 4y)(3x - 4y) = 9x^2 - 24xy + 16y^2} \\ \boxed{(3x + 4y)(3x - 4y) = 9x^2 - 16y^2} \quad \text{Difference of two squares} \\ (2p^2 + 3pq)(5p + 3q) = 10p^3 + 6p^2q + 15p^2q + 9pq^2 = 10p^3 + 21p^2q + 9pq^2 \\ (2ab - b^2)(a^2 - 3ab) = 2a^3b - 6a^2b^2 - a^2b^2 + 3ab^3 = 2a^3b - 7a^2b^2 + 3ab^3 \\ \begin{aligned} (a+b)(a^2 - ab + b^2) &= a^3 - a^2b + ab^2 + a^2b - ab^2 + b^3 \\ &= a^3 + b^3 \end{aligned} \\ \begin{aligned} (a-b)(a^2 + ab + b^2) &= a^3 + a^2b + ab^2 - a^2b - ab^2 - b^3 \\ &= a^3 - b^3 \end{aligned}

    a=2a2=4(a+1)(a1)=3(a+1)(a1)=a21 a = 2 \\ a^2 = 4 \\ (a + 1)(a - 1) = 3 \\ (a + 1)(a - 1) = a^2 - 1

    1.B.2

    x2+8x+7=(x+1)(x+7)p2+6p+5=(p+1)(p+5)x2+7x+6=(x+1)(x+6)x2+5x+6=(x+2)(x+3)y2+6y+9=(y+3)(y+3)=(y+3)2x2+6x+8=(x+2)(x+4)a2+7a+10=(a+2)(a+5)x2+9x+20=(x+4)(x+5)x2+13x+36=(x+4)(x+9) x^2 + 8x + 7 = (x + 1)(x + 7) \\ p^2 + 6p + 5 = (p + 1)(p + 5) \\ x^2 + 7x + 6 = (x + 1)(x + 6) \\ x^2 + 5x + 6 = (x + 2)(x + 3) \\ y^2 + 6y + 9 = (y + 3)(y + 3) = (y + 3)^2 \\ x^2 + 6x + 8 = (x + 2)(x + 4) \\ a^2 + 7a + 10 = (a + 2)(a + 5) \\ x^2 + 9x + 20 = (x + 4)(x + 5) \\ x^2 + 13x + 36 = (x + 4)(x + 9)

    1.B.3

    3x2+8x+5=(3x+5)(x+1)2y2+15y+7=(2y+1)(y+7)3a2+11a+6=(3a2+9a)+(2a+6)=3a(a+3)+2(a+3)=(3a+2)(a+3)3x2+19x+6=(3x+1)(x+6)5p2+23p+12=(5p+3)(p+4)5x2+16x+12=(5x+6)(x+2) 3x^2 + 8x + 5 = (3x + 5)(x + 1) \\ 2y^2 + 15y + 7 = (2y + 1)(y + 7) \\ 3a^2 + 11a + 6 = (3a^2 + 9a) + (2a + 6) = 3a(a + 3) + 2(a + 3) = (3a + 2)(a + 3) \\ 3x^2 + 19x + 6 = (3x + 1)(x + 6) \\ 5p^2 + 23p + 12 = (5p + 3)(p + 4) \\ 5x^2 + 16x + 12 = (5x + 6)(x + 2)

    1.B.4

    ax2bx+cb=p+qpq=acx211x+24=(x3)(x8)y29y+18=(y3)(y6)x211x+18=(x2)(x9) \boxed{ax^2 - bx + c} \qquad \boxed{b = p + q}\boxed{pq = ac} \\ x^2 - 11x + 24 = (x - 3)(x - 8) \\ y^2 - 9y + 18 = (y - 3)(y - 6) \\ x^2 - 11x + 18 = (x - 2)(x - 9)

    ax2+bxcb=pqpq=acp2+5p24=(p+8)(p3)x2+4x12=(x+6)(x2) \boxed{ax^2 + bx - c} \qquad \boxed{b = p - q}\boxed{pq = ac} \\ p^2 + 5p - 24 = (p + 8)(p - 3) \\ x^2 + 4x - 12 = (x + 6)(x - 2)

    ax2bxcb=pqpq=ac2q25q3=(2q+1)(q3)3x210x8=(3x+2)(x4)2a23a5=(2x5)(x+1)2x25x12=(2x+3)(x4) \boxed{ax^2 - bx - c} \qquad \boxed{b = p - q}\boxed{pq = ac} \\ 2q^2 - 5q - 3 = (2q + 1)(q - 3) \\ 3x^2 - 10x - 8 = (3x + 2)(x - 4) \\ 2a^2 - 3a - 5 = (2x - 5)(x + 1) \\ 2x^2 - 5x - 12 = (2x + 3)(x - 4)

    3b220b+12=(3b2)(b6)9x225y2=(3x+5y)(3x+5y)Diff. of two squares16x481y4=(4x2+9y2)(4x29y2)=(4x2+9y2)(2x+3y)(2x3y) 3b^2 - 20b + 12 = (3b - 2)(b - 6) \\ 9x^2 - 25y^2 = (3x + 5y)(3x + 5y) \quad \text{Diff. of two squares} \\ 16x^4 - 81y^4 = (4x^2 + 9y^2)(4x^2 - 9y^2) = (4x^2 + 9y^2)(2x + 3y)(2x - 3y)

    Notice how the (4x29y2)(4x^2 - 9y^2) could be factored further, but (4x2+9y2)(4x^2 + 9y^2) could not.


    ax2+bx+c\boxed{ax^2 + bx + c}

    There seem to be at least two ways to factorise quadratic functions quickly:

    1. Find p and q such that pq=acpq = ac and p+q=bp+q = b. Then see which one of p and q you can divide with a, and place it to the opposite group of a, and divide it by a. Example:

      3x2+11a+6ac=18p+q=9+2pq=92(p (9) can be divided by a (3))(3x+2)(x+9/3)(Place a and q left, and p/a right)3x^2 + 11a + 6 \\ ac = 18 \\ p+q = 9+2 \\ pq = 9*2 \qquad \text{(p (9) can be divided by a (3))} \\ (3x + 2)(x + 9/3) \qquad \text{(Place a and q left, and p/a right)}

      This doesn't work with some quadratic functions, though. For example:

      6x219x+10ac=60p+q=15+4pq=154(p nor q can be divided by a)6x^2 - 19x + 10 \\ ac = 60 \\ p+q = 15 + 4 \\ pq = 15 * 4 \qquad \text{(p nor q can be divided by a)}

      But both p and q can be divided by factors of a. Here the factors are 3 and 2, so the result looks something like (3x...)(2x...)(3x - ...)(2x - ...) rather than (6x...)(x...)(6x - ...)(x - ...).

      So, more generally, it looks like whatever you leave as the multiplier on one side, you have to divide by on the opposite side.

      6x219x+10=(32)x2(15+4)x+19=(3xDivide by 2 here)(2xDivide by 3 here)=(3x4/2)(2x15/3)=(3x2)(2x5)6x^2 - 19x + 10 = \\ (3*2)x^2 - (15 + 4)x + 19 = \\ (3x - \boxed{\text{Divide by 2 here}})(2x - \boxed{\text{Divide by 3 here}}) = \\ (3x - 4/2)(2x - 15/3) = \\ (3x - 2)(2x - 5)

      (6x215x)+(4x+10)=3x(2x5)2(2x5)=(3x2)(2x5)(6x^2 - 15x) + (-4x + 10) = \\ 3x(2x - 5) - 2(2x - 5) = \\ (3x - 2)(2x - 5)

    2. Find p and q such that pq=cpq = c. Then see which one you have to multiply by a, and which one you have to add, to get b — in other words, b=ap+qb = ap + q. Example:

      3x2+11a+6pq=c32=6Now we know the result looks like (3x+3 or 2)(x+3 or 2)ap+q=c33+2=11aq+p=c32+3=9Now we know a must by multiplied by p, not q(3x+2)(x+3)3x^2 + 11a + 6 \\ pq = c \qquad 3*2 = 6 \\ \text{Now we know the result looks like }(3x + \boxed{3\text{ or }2})(x + \boxed{3\text{ or }2}) \\ ap + q = c \qquad 3*3 + 2 = 11 \\ aq + p = c \qquad 3*2 + 3 = 9 \\ \text{Now we know a must by multiplied by p, not q} \\ (3x + 2)(x + 3)

      Let's try a harder one:

      6x219x+10=pq=c25=10ap+q=b62+5=17aq+p=b65+2=326x^2 - 19x + 10 = \\ pq = c \qquad 2*5 = 10 \\ ap + q = b \qquad 6*2 + 5 = 17 \\ aq + p = b \qquad 6*5 + 2 = 32

      Doesn't work so well here, so we're back to having to factorise a into two values, like in option 1 above.

    Another quick way might be to find factors of a\boxed{a} and c\boxed{c}, and use bb only to check our result. Our options for 6x219x+106x^2 - 19x + 10:

    Factors of a:

    • 161*6
    • 232*3

    Factors of c:

    • 252*5

    (6x2)(x5)b=65+21=32(6x5)(x2)b=62+51=17(3x2)(2x5)b=35+22=19(3x5)(2x2)b=32+52=16 (6x - 2)(x - 5) \qquad b = 6*5 + 2*1 = 32 \\ (6x - 5)(x - 2) \qquad b = 6*2 + 5*1 = 17 \\ (3x - 2)(2x - 5) \qquad b = 3*5 + 2*2 = \boxed{19} \\ (3x - 5)(2x - 2) \qquad b = 3*2 + 5*2 = 16


    1.C Fractions

    numeratordenominator \dfrac{numerator}{denominator}

    Division is right-distributive:

    a+bc=ac+bcthat is,(a+b)/c=a/c+b/c \dfrac{a+b}{c} = \dfrac{a}{c} + \dfrac{b}{c} \qquad \text{that is,} \qquad (a+b)/c = a/c + b/c

    But not left-distributive:

    ab+cab+acthat is,a/(b+c)a/b+a/c \dfrac{a}{b + c} \neq \dfrac{a}{b} + \dfrac{a}{c} \qquad \text{that is,} \qquad a/(b+c) \neq a/b + a/c

    The line in the fraction is effectively working as a bracket.

    Dividing by c is the same as multiplying by 1/c:

    (a+b)c=(a+b)1c \dfrac{(a+b)}{c} = (a+b)\dfrac{1}{c}

    A fraction keeps the same value if its top and bottom are multiplied or divided by the same value:

    ab=acbcab=a/cb/c \dfrac{a}{b} = \dfrac{ac}{bc} \qquad \dfrac{a}{b} = \dfrac{a/c}{b/c}

    Doing this is called cancelling when the purpose is to get rid of the same factor in the numerator and denominator:

    acbc=abDivide both sides by c \dfrac{a\cancel{c}}{b\cancel{c}} = \dfrac{a}{b} \quad \text{Divide both sides by c}\\

    a÷cb÷c=abMultiply both sides by c \dfrac{a \div \cancel{c}}{b \div \cancel{c}} = \dfrac{a}{b} \quad \text{Multiply both sides by c}

    It doesn't matter where you put the sign:

    ab=ab=ab -\dfrac{a}{b} = \dfrac{-a}{b} = \dfrac{a}{-b}

    1.C.1

    912=9/312/3=34\dfrac{9}{12} = \dfrac{9/3}{12/3} = \dfrac{3}{4}

    630=6/630/6=15\dfrac{6}{30} = \dfrac{6/6}{30/6} = \dfrac{1}{5}

    2595=519\dfrac{25}{95} = \dfrac{5}{19}

    2464=38\dfrac{24}{64} = \dfrac{3}{8}

    5x8x=58\dfrac{5x}{8x} = \dfrac{5}{8}

    abac=bc\dfrac{ab}{ac} = \dfrac{b}{c}

    3y22y=3yy2y=3y2\dfrac{3y^2}{2y} = \dfrac{3y\bcancel{y}}{2\bcancel{y}} = \dfrac{3y}{2}

    8pq2q=4p1=4p\dfrac{8pq}{2q} = \dfrac{4p}{1} = 4p

    4a22ab=2ab\dfrac{4a^2}{2ab} = \dfrac{2a}{b}

    3x2y32xy4=3x2y\dfrac{3x^2y^3}{2xy^4} = \dfrac{3x}{2y}

    6p2q5pq2=6p5q\dfrac{6p^2q}{5pq^2} = \dfrac{6p}{5q}

    5abb3=5ab2\dfrac{5ab}{b^3} = \dfrac{5a}{b^2}

    Sometimes, the process of factoring will be very important in simplifying fractions.

    xy+xzxw=x(y+x)xw=y+zw\dfrac{xy + xz}{xw} = \dfrac{\cancel{x}(y + x)}{\cancel{x}w} = \dfrac{y + z}{w}

    ab+acb+c=a(b+c)b+c=a\dfrac{ab + ac}{b + c} = \dfrac{a\cancel{(b + c)}}{\cancel{b + c}} = a

    1.C.2

    ab+acad=a(b+c)ad=b+cdFactorise and cancelor=abad+acad=b+cdRight-distribute ad and cancel \begin{aligned} \dfrac{ab + ac}{ad} &= \dfrac{a(b + c)}{ad} = \dfrac{b + c}{d} \quad \text{Factorise and cancel} \\ & \text{or} \\ &= \dfrac{ab}{ad} + \dfrac{ac}{ad} = \dfrac{b + c}{d} \quad \text{Right-distribute ad and cancel} \end{aligned}

    Remember: the line of a fraction basically splits the fraction into two brackets.

    ab+cab+c \dfrac{ab + c}{a} \neq b + c

    ab+ca=(ab+c)/a=ab/a+c/aRight-distribute=b+ca \begin{aligned} \dfrac{ab + c}{a} &= (ab + c)/a \\ &= ab/a + c/a \qquad \text{Right-distribute} \\ &= b + \dfrac{c}{a} \end{aligned}

    2x+6y6x8y=2(x+3y)2(3x4y)=x+3y3x4y \dfrac{2x + 6y}{6x - 8y} = \dfrac{2(x + 3y)}{2(3x - 4y)} = \dfrac{x + 3y}{3x - 4y}

    6a9b4a6b=3(2a3b)2(2a3b)=32 \dfrac{6a - 9b}{4a - 6b} = \dfrac{3(2a - 3b)}{2(2a - 3b)} = \dfrac{3}{2}

    pxpqp2px=xqpx \dfrac{px - pq}{p^2 - px} = \dfrac{x - q}{p - x}

    3x+2y6x=3x6x+2y6x=12+21y23x=12+y3xCan’t simplify \dfrac{3x + 2y}{6x} = \dfrac{3x}{6x} + \dfrac{2y}{6x} = \dfrac{1}{2} + \dfrac{2*1y}{2*3x} = \dfrac{1}{2} + \dfrac{y}{3x} \quad \text{Can't simplify}

    2xy+5xz6x=2y+5z6 \dfrac{2xy + 5xz}{6x} = \dfrac{2y + 5z}{6}

    4xz+6yz2x+3y=2z(2x+3y)2x+3y=2z \dfrac{4xz + 6yz}{2x + 3y} = \dfrac{2z(2x + 3y)}{2x + 3y} = 2z

    2p3q2p+3qCan’t simplify \dfrac{2p - 3q}{2p + 3q} \quad \text{Can't simplify}

    x2y2(x+y)2=(x+y)(xy)(x+y)(x+y)=xyx+yDiff. of squares \dfrac{x^2 - y^2}{(x + y)^2} = \dfrac{(x + y)(x - y)}{(x + y)(x + y)} = \dfrac{x-y}{x+y} \quad \text{Diff. of squares}

    x2+5x+6x2+x2=(x+3)(x+2)(x+2)(x1)=x+3x1 \dfrac{x^2 + 5x + 6}{x^2 + x - 2} = \dfrac{(x+3)(x+2)}{(x+2)(x-1)} = \dfrac{x+3}{x-1}


    Adding and subtracting fractions

    AB+CD=ADBD+BCBD=AD+BCBD \dfrac{A}{B} + \dfrac{C}{D} = \dfrac{AD}{BD} + \dfrac{BC}{BD} = \dfrac{AD + BC}{BD}

    The same applies to subtraction.

    ABCD=ADBDBCBD=ADBCBD \dfrac{A}{B} - \dfrac{C}{D} = \dfrac{AD}{BD} - \dfrac{BC}{BD} = \dfrac{AD - BC}{BD}

    Remember: always treat the numerator and denominator as bracketed expressions, so that you properly distribute signs.

    abcdeaecbdbbe \dfrac{a}{b} - \dfrac{c - d}{e} \neq \dfrac{ae - cb - db}{be}

    abcde=e(a)b(cd)(b)(e)=aecb+dbbe \dfrac{a}{b} - \dfrac{c - d}{e} = \dfrac{e(a) - b(c - d)}{(b)(e)} = \dfrac{ae - cb + db}{be}

    Remember: if both the numerator and the denominator are negative, the result is a positive number, since they both have 1-1 as a common factor.

    53=1(5)1(3)=53 \dfrac{-5}{-3} = \dfrac{\cancel{-1}(5)}{\cancel{-1}(3)} = \dfrac{5}{3}


    1.C.3

    3x2x+3+2x3x+1=(3x2)(x+1)+(2x3)(x+3)(x+3)(x+1) \dfrac{3x - 2}{x + 3} + \dfrac{2x - 3}{x + 1} = \dfrac{(3x - 2)(x + 1) + (2x - 3)(x + 3)}{(x + 3)(x + 1)}

    =3x2+x2+2x2+3x9(x+1)(x+3)= \dfrac{3x^2 + x - 2 + 2x^2 + 3x - 9}{(x + 1)(x + 3)}

    =5x2+4x11x2+4x+3= \dfrac{5x^2 + 4x - 11}{x^2 + 4x + 3}

    Not multiplying out the demoninator makes cancelling easier, so we usually leave the denominator factored:

    =5x2+4x11(x+1)(x+3)= \dfrac{5x^2 + 4x - 11}{(x + 1)(x + 3)}


    Repeated factors in adding fractions

    When adding fractions, you need to find a common denominator. One way is to multiply diagonally (cross-multiply):

    34+56=3646+5446=18+2024=1912 \dfrac{3}{4} + \dfrac{5}{6} = \dfrac{3*6}{4*6} + \dfrac{5*4}{4*6} = \dfrac{18 + 20}{24} = \dfrac{19}{12}

    But if the denominators share a repeated factor, then you can use a shortcut:

    ABC+DBE=AEBCE+CDBCE \dfrac{A}{BC} + \dfrac{D}{BE} = \dfrac{AE}{BCE} + \dfrac{CD}{BCE}

    34+56=32(2)+52(3)=3(3)+5(2)2(2)(3)=1912 \dfrac{3}{4} + \dfrac{5}{6} = \dfrac{3}{2(2)} + \dfrac{5}{2(3)} = \dfrac{3(3) + 5(2)}{2(2)(3)} = \dfrac{19}{12}

    Also, when there is a repeated factor in the denominators, you can ignore the repeated factor in one of the denominators when multiplying the denominators:

    34+56=32(2)+52(3)=3(3)+5(2)4(3)=1912 \dfrac{3}{4} + \dfrac{5}{6} = \dfrac{3}{2(2)} + \dfrac{5}{\cancel{2}(3)} = \dfrac{3(3) + 5(2)}{4(3)} = \dfrac{19}{12}

    (Remember:) Or more simply, ask yourself: what do I need to multiply the left summand's top and bottom, and the right summand's top and bottom, so that the denominators are the same?

    34+56=34(33)+56(22)=1912 \dfrac{3}{4} + \dfrac{5}{6} = \dfrac{3}{4} \bigg(\dfrac{3}{3}\bigg) + \dfrac{5}{6} \bigg(\dfrac{2}{2}\bigg) = \dfrac{19}{12}

    All of this applies to more complicated expressions as well — here x is a repeated factor:

    2x(x+3)+3x(2x1)=2(2x1)+3(x+3)x(x+3)(2x1)=7x+7x(x+3)(2x1) \dfrac{2}{x(x+3)} + \dfrac{3}{x(2x - 1)} = \dfrac{2(2x - 1) + 3(x + 3)}{x(x+3)(2x-1)} = \dfrac{7x + 7}{x(x+3)(2x-1)}


    1.C.4

    29+715=2533+7335=3145\dfrac{2}{9} + \dfrac{7}{15} = \dfrac{2*5}{3*3} + \dfrac{7*3}{3*5} = \dfrac{31}{45}

    56+38=2048+948=2924\dfrac{5}{6} + \dfrac{3}{8} = \dfrac{20}{48} + \dfrac{9}{48} = \dfrac{29}{24}

    13+34+56=76+34=2312\dfrac{1}{3} + \dfrac{3}{4} + \dfrac{5}{6} = \dfrac{7}{6} + \dfrac{3}{4} = \dfrac{23}{12}

    3xy(2xy)+5yx(2xy)=3x2+5y2xy(2xy)\dfrac{3x}{y(2x - y)} + \dfrac{5y}{x(2x - y)} = \dfrac{3x^2 + 5y^2}{xy(2x - y)}

    2x(3x+1)+5x(2x1)=2(2x1)+5(3x+1)x(3x+1)(2x1)=19x+3x(3x+1)(2x1)\dfrac{2}{x(3x + 1)} + \dfrac{5}{x(2x - 1)} = \dfrac{2(2x - 1) + 5(3x + 1)}{x(3x + 1)(2x - 1)} = \dfrac{19x + 3}{x(3x + 1)(2x - 1)}

    4x2y2+3(x+y)2=4(x+y)(xy)+3(x+y)2=4(x+y)+3(xy)(x+y)2(xy)=7x+y(x+y)2(xy)\dfrac{4}{x^2 - y^2} + \dfrac{3}{(x+y)^2} = \dfrac{4}{(x+y)(x-y)} + \dfrac{3}{(x+y)^2} = \dfrac{4(x+y) + 3(x-y)}{(x+y)^2(x-y)} = \dfrac{7x + y}{(x+y)^2(x-y)}

    1.C.5

    3x510+2x315=3(3x5)+2(2x3)103Or 152=13x2130\dfrac{3x - 5}{10} + \dfrac{2x - 3}{15} = \dfrac{3(3x - 5) + 2(2x - 3)}{\underbrace{10*3}_{\text{Or }15*2}} = \dfrac{13x - 21}{30}

    3a+5b4a3b2=1(3a+5b)2(a3b)41=a+11b4\dfrac{3a + 5b}{4} - \dfrac{a - 3b}{2} = \dfrac{1(3a + 5b) - 2(a -3b)}{4*1} = \dfrac{a + 11b}{4}

    3m5n63m7n2=(3m5n)3(3m7n)6=6m+16n6=2(8n3m)23=8n3m3\dfrac{3m - 5n}{6} - \dfrac{3m - 7n}{2} = \dfrac{(3m - 5n) - 3(3m - 7n)}{6} = \dfrac{-6m + 16n}{6} = \dfrac{2(8n - 3m)}{2*3} = \dfrac{8n - 3m}{3}

    2ba(2a+b)+3ab(2a+b)=(2ba(2a+b)bb)+(3ab(2a+b)aa)=2b2+3a2ab(2a+b)\dfrac{2b}{a(2a + b)} + \dfrac{3a}{b(2a + b)} = \bigg(\dfrac{2b}{a(2a + b)} * \dfrac{b}{b}\bigg) + \bigg(\dfrac{3a}{b(2a + b)} * \dfrac{a}{a}\bigg) = \dfrac{2b^2 + 3a^2}{ab(2a+b)}

    2a(a+b)(3a+b)+3b(ab)(3a+b)=2a2+ab+3b2(a2b2)(3a+b)\dfrac{2a}{(a+b)(3a+b)} + \dfrac{3b}{(a-b)(3a+b)} = \dfrac{2a^2 + ab + 3b^2}{(a^2 - b^2)(3a + b)}

    5x2y22x(x+y)=5(x+y)(xy)2x(x+y)=5x2x+2yx(x+y)(xy)=3x+2yx(x2y2)\dfrac{5}{x^2 - y^2} - \dfrac{2}{x(x + y)} = \dfrac{5}{(x+y)(x-y)} - \dfrac{2}{x(x + y)} = \dfrac{5x - 2x + 2y}{x(x+y)(x-y)} = \dfrac{3x + 2y}{x(x^2 - y^2)}


    Multiplying and dividing fractions

    ABCD=ACBDABC=A1BC=ABC \dfrac{A}{B} * \dfrac{C}{D} = \dfrac{AC}{BD} \qquad\qquad A\dfrac{B}{C} = \dfrac{A}{1} * \dfrac{B}{C} = \dfrac{AB}{C}

    AB÷CD=ABDCFlip top and bottom \dfrac{A}{B} \div \dfrac{C}{D} = \dfrac{A}{B} * \dfrac{D}{C} \quad \text{Flip top and bottom}

    Remember: dividing by A1\frac{A}{1} is the same as multiplying by 1A\frac{1}{A}.


    1.C.6

    2x(2x3y)32x(x+4y)=4x(x+4y)3x(2x3y)2x2(2x3y)(x+4y)=\dfrac{2}{x(2x - 3y)} - \dfrac{3}{2x(x + 4y)} = \dfrac{4x(x + 4y) - 3x(2x - 3y)}{2x^2(2x - 3y)(x + 4y)} =

    2x2+25xy2x2(2x3y)(x+4y)=2x+25y2x(2x3y)(x+4y)\dfrac{-2x^2 + 25xy}{2x^2(2x - 3y)(x + 4y)} = \dfrac{-2x + 25y}{2x(2x - 3y)(x + 4y)}

    You didn't notice that x in the denominators was a repeated factor. We can do as follows:

    2x(2x3y)32x(x+4y)=4(x+4y)3(2x3y)2x(2x3y)(x+4y)=2x+25y2x(2x3y)(x+4y)\dfrac{2}{x(2x - 3y)} - \dfrac{3}{2x(x + 4y)} = \dfrac{4(x + 4y) - 3(2x - 3y)}{2x(2x - 3y)(x + 4y)} = \dfrac{-2x + 25y}{2x(2x - 3y)(x + 4y)}

    2x13x75=(10x5)(3x21)15=7x+1615\dfrac{2x - 1}{3} - \dfrac{x - 7}{5} = \dfrac{(10x - 5) - (3x - 21)}{15} = \dfrac{7x + 16}{15}

    3a22bab6c=3a3b12bc=a34c\dfrac{3a^2}{2b} * \dfrac{ab}{6c} = \dfrac{3a^3b}{12bc} = \dfrac{a^3}{4c}

    2a3b÷b29a2=18a33b3=6a3b3\dfrac{2a}{3b} \div \dfrac{b^2}{9a^2} = \dfrac{18a^3}{3b^3} = \dfrac{6a^3}{b^3}

    3xy2z÷2x25yz2=15xyz22x2y2z=15z2xy\dfrac{3x}{y^2z} \div \dfrac{2x^2}{5yz^2} = \dfrac{15xyz^2}{2x^2y^2z} = \dfrac{15z}{2xy}

    3x2(2x+3y)2y(xy)y2(xy)x(x+3y)=3xy(2x+3y)2(x+3y)=6x2y+9xy22(x+3y)\dfrac{3x\cancel{^2}(2x + 3y)}{2\cancel{y}\cancel{(x - y)}} * \dfrac{y\cancel{^2}\cancel{(x - y)}}{\cancel{x}(x + 3y)} = \dfrac{3xy(2x + 3y)}{2(x + 3y)} = \dfrac{6x^2y + 9xy^2}{2(x + 3y)}

    5pq(p+q)3p+2q3p+2qq2(5pq)=5p(p+q)q(5pq)\dfrac{5p\cancel{q}(p + q)}{\cancel{3p + 2q}} * \dfrac{\cancel{3p + 2q}}{q\cancel{^2}(5p - q)} = \dfrac{5p(p + q)}{q(5p - q)}

    (a2b2)4a2+b2a4b4(a+b)4=(a+b)4(ab)4a2+b2(a2+b2)(a2b2)(a+b)4\dfrac{(a^2 - b^2)^4}{a^2 + b^2} * \dfrac{a^4 - b^4}{(a + b)^4} = \dfrac{\cancel{(a+b)^4}(a-b)^4}{\cancel{a^2 + b^2}} * \dfrac{\cancel{(a^2 + b^2)}(a^2 - b^2)}{\cancel{(a + b)^4}}

    =(ab)4(a2b2)=(a+b)(ab)5= (a-b)^4(a^2 - b^2) = (a+b)(a-b)^5


    The rules for working with powers

    aman=am+n102103=105 \boxed{a^m * a^n = a^{m+n}} \qquad 10^2 * 10^3 = 10^5

    am÷an=amn103÷102=101 \boxed{a^m \div a^n = a^{m-n}} \qquad 10^3 \div 10^2 = 10^1

    (am)n=amn(102)3=106 \boxed{(a^m)^n = a^{mn}} \qquad (10^2)^3 = 10^6

    am+am(2a)m12+12(21)2am+am=2(am)12+12=2(12) a^m + a^m \neq (2a)^m \qquad 1^2 + 1^2 \neq (2*1)^2 \\ a^m + a^m = 2(a^m) \qquad 1^2 + 1^2 = 2(1^2)

    Special cases:

    a3÷a2=aaaaa=a1=a a^3 \div a^2 = \frac{a*a*a}{a*a} = \boxed{a^1 = a}

    a3÷a3=aaaaaa=a0=1 a^3 \div a^3 = \frac{a*a*a}{a*a*a} = \boxed{a^0 = 1}

    a2÷a3=aaaaa=a1=1a and an=1an a^2 \div a^3 = \frac{a*a}{a*a*a} = \boxed{a^{-1} = \frac{1}{a}}\quad\text{ and }\quad\boxed{a^{-n} = \frac{1}{a^n}}

    A fraction exponent is the same as taking a root:

    a1/2a1/2=a1=aTherefore a1/2=±aSquare root a^{1/2} * a^{1/2} = a^1 = a \quad \text{Therefore }\boxed{a^{1/2} = \pm \sqrt{a}} \quad \text{Square root}

    a1/3a1/3a1/3=a1=aTherefore a1/n=anNth root a^{1/3} * a^{1/3} * a^{1/3} = a^1 = a \quad \text{Therefore }\boxed{a^{1/n} = \sqrt[n]{a}} \quad \text{Nth root}

    (ab)3=ababab=a3b3Therefore (ab)n=anbn and ab=ab \Big(\dfrac{a}{b}\Big)^3 = \dfrac{a}{b} * \dfrac{a}{b} * \dfrac{a}{b} = \dfrac{a^3}{b^3} \quad \text{Therefore } \boxed{\Big(\dfrac{a}{b}\Big)^n = \dfrac{a^n}{b^n}} \text{ and } \boxed{\sqrt{\dfrac{a}{b}} = \dfrac{\sqrt{a}}{\sqrt{b}}}

    An even root has two solutions. An odd root has one solution.

    By convention, a\sqrt{a} is only the positive value, a.k.a. the principal root, but a1/2=±aa^{1/2} = \pm \sqrt{a}. Therefore \sqrt{} does not implicitly contain the negative value as well, and you have to explicitly say ±\pm.

    a1/2=±a={a,a}a1/3=a3(a)2=a(a1/2)2=±a a^{1/2} = \pm \sqrt{a} = \{\sqrt{a}, -\sqrt{a}\} \\ a^{1/3} = \sqrt[3]{a} \\ (\sqrt{a})^2 = a \\ (a^{1/2})^2 = \pm a


    41/2=±4={22=±2 4^{1/2} = \pm \sqrt{4} = \begin{cases}2 \\ -2\end{cases} = \pm 2

    81/3=83=2 8^{1/3} = \sqrt[3]{8} = 2

    272/3=271/3271/3=(273)2=32=9 27^{2/3} = 27^{1/3} * 27^{1/3} = (\sqrt[3]{27})^2 = 3^2 = 9

    161/4=±164=±2 16^{1/4} = \pm \sqrt[4]{16} = \pm 2

    Remember: in general, each even root (e.g. ±x2\pm \sqrt[2]{x} or ±x4\pm \sqrt[4]{x}) of a positive number has two possible solutions. An odd root (e.g. x3\sqrt[3]{x}) has a single (positive or negative) solution.

    Remember to always include the ±\pm in the solutions of even roots: a2=ba^2 = b so a=±ba = \pm\sqrt{b}.

    At present, we cannot find any even roots of negative numbers, although in Chapter 10 [Complex numbers] we will find out how it is possible to extend the number system so that we can have roots for these numbers too. Have a guess at how many fourth roots of 16 we shall then have.

    Based on the chapter name it has something to do with complex numbers. I have no clear idea what to do yet, but I'll try something out here (I think 1\sqrt{-1} is a complex/imaginary number):

    1=(1)1/2=(11/411/4)=11/411/4=(1)1/4(1)1/4±1=11/2=1±2=21/2±2=(2)1/2=±i?±8=81/2=81/21=81/281/2181/2=8281/2=82÷8281/2÷82=183/2±16=±4±164=±2±16=±i? \sqrt{-1} = (-1)^{1/2} = \cancel{-(1^{1/4} * 1^{1/4}) = -1^{1/4} * -1^{1/4}} = (-1)^{1/4}(-1)^{1/4} \\ \pm \sqrt{1} = 1^{1/2} = 1 \\ \pm \sqrt{2} = 2^{1/2} \\ \pm \sqrt{-2} = (-2)^{1/2} = \pm i? \\ \pm \sqrt{8} = 8^{1/2} = \frac{8^{1/2}}{1} = \frac{8^{1/2} * 8^{1/2}}{1 * 8^{1/2}} = \frac{8^2}{8^{1/2}} = \frac{8^2 \div 8^2}{8^{1/2} \div 8^2} = \frac{1}{8^{-3/2}} \\ \pm \sqrt{16} = \pm 4 \\ \pm \sqrt[4]{16} = \pm 2 \\ \pm \sqrt{-16} = \pm i?

    My guess is we'll still have two roots for 164\sqrt[4]{16}, since 1616 and 16-16 are different numbers.

    Yes, it is most satisfyingly four.

    (╯°□°)╯︵ ┻━┻

    I guess it'll be something like:

    ±164={22ii \pm \sqrt[4]{16} = \begin{cases}2 \\ -2 \\ i \\ -i\end{cases}

    1.D.1

    31=131161/2=±16=4=±493/2=92/291/2=9±9=±27271/3=1273=1340=4n÷4n=171=772=172=14941/2=1±4=±12321/5=325=2 3^{-1} = \frac{1}{3^1} \\ 16^{1/2} = \pm \sqrt{16} = \cancel{4} = \pm 4 \\ 9^{3/2} = 9^{2/2} * 9^{1/2} = 9 * \pm \sqrt{9} = \pm 27 \\ 27^{-1/3} = \frac{1}{\sqrt[3]{27}} = \frac{1}{3} \\ 4^{0} = 4^{n} \div 4^{n} = 1 \\ 7^{1} = 7 \\ 7^{-2} = \frac{1}{7^2} = \frac{1}{49} \\ 4^{-1/2} = \frac{1}{\pm \sqrt{4}} = \pm \frac{1}{2} \\ 32^{1/5} = \sqrt[5]{32} = 2

    163/4=161/4161/4161/4=(1±164)3=(±12)3=±18 16^{-3/4} = 16^{-1/4} * 16^{-1/4} * 16^{-1/4} = (\frac{1}{\pm \sqrt[4]{16}})^3 = (\pm \frac{1}{2})^3 = \pm \frac{1}{8}

    or

    163/4=1163/4=1(161/4)3=1(±164)3=(1±2)3=±18 16^{-3/4} = \frac{1}{16^{3/4}} = \frac{1}{(16^{1/4})^3} = \frac{1}{(\pm \sqrt[4]{16})^3} = (\frac{1}{\pm 2})^3 = \pm \frac{1}{8}

    253/2=2525=±125491/2=1±49=±17 25^{3/2} = 25 * \sqrt{25} = \pm 125 \\ 49^{-1/2} = \frac{1}{\pm \sqrt{49}} = \pm \frac{1}{7}


    We don’t very often have to say that we have none of something. So why is having a symbol for zero so important?

    • So that we can say we have none of something when we need to?
    • So that we can create generalizations (axioms) like the additive identity?
    • To act as a step towards the concept of negative numbers (which are useful to describe losses etc.)?

    It makes it possible to put in all the necessary place values in our system for writing numbers, for example 301. Having a place value system means that once the symbols for 1 to 9 are learnt, a number of any size can be written.

    1001 in base-10 is (11000)+(0100)+(010)+(11){(1*1000) + (0*100) + (0*10) + (1*1)}, or (1103)+(0102)+(0101)+(1100){(1 * 10^3) + (0 * 10^2) + (0 * 10^1) + (1 * 10^0)}.

    1001 in base-2 is (18)+(04)+(02)+(11){(1*8) + (0*4) + (0*2) + (1*1)}, or (123)+(022)+(021)+(120){(1 * 2^3) + (0 * 2^2) + (0 * 2^1) + (1 * 2^0)}.

    910_{10} = 10012_2


    If we put little tiny points for the value of each possible fraction on a number line how close will these points be together? Will there be any gaps?

    They will be infinitesimally close. There won't be any gaps, because the gap between any two points can always be made smaller by adding a new point between them, ad infinitum.

    Think of a fraction which lies between F1=1100F_1 = \frac{1}{100} and F2=1101F_2 = \frac{1}{101}

                       |
                       F1
    
             |
             F2
    
        |    |    |    |
                  F3
    

    Midway between F1F_1 and F2F_2:

    F3=(1100+1101)/2=201100101/2=2011101002=20120200 F_3 = (\frac{1}{100} + \frac{1}{101}) / 2 = \frac{201}{100 * 101} / 2 = \frac{201 * 1}{10100 * 2} = \frac{201}{20200}

    Or easier — this is close to, but not exactly the midway point:

    F3=1100+1/2=12(100+1/2)2=2201 F_3 = \frac{1}{100 + 1/2} = \frac{1 * 2}{(100 + 1/2) * 2} = \frac{2}{201}

    Why isn't this the midway point? Isn't 100.5 halfway between 100 and 101?

    Example: 13\frac{1}{3} is not halfway between 12\frac{1}{2} and 14\frac{1}{4}.

    14=0.25+0.0833313=0.333+0.166612=0.5 \frac{1}{4} = 0.25 \qquad +0.08333\dots \\ \frac{1}{3} = 0.333\dots \qquad +0.1666\dots \\ \frac{1}{2} = 0.5

    1/1:  |---------++++++++++|
    1/2:  |------+++|         |
    1/3:  |----++|      |     |
    1/4:  |---+|    |    |    |
    1/5:  |   |   |   |   |   |
    

    The midpoint is exactly at:

    (12+14)/2=34/2=38 (\frac{1}{2} + \frac{1}{4}) / 2 = \frac{3}{4} / 2 = \frac{3}{8}

    1/2:  |---------------|               |
    1/4:  |-------|       |       |       |
    3/8:  |---|---|---|   |   |   |   |   |
    

    Does there exist a fraction that equals 2\sqrt{2}?

    ab=2(ab)2=a2b2=2a2=2b2 \frac{a}{b} = \sqrt{2} \qquad (\frac{a}{b})^2 = \frac{a^2}{b^2} = 2 \qquad a^2 = 2b^2

    What kind of number must 2b22b^2 be?

    Couldn't say.

    It must be even, so a2a^2 must be even as well.

    What happens if you square (a) even numbers (b) odd numbers?

    • (a) The result stays even
    • (b) The result stays odd

    (2n)2=4n2(2n+1)2=4n2+4n+1 (2n)^2 = 4n^2 \\ (2n + 1)^2 = 4n^2 + 4n + 1

    Remember: even numbers are 2n2n, and odd numbers are 2n+12n + 1.

    2b22b^2 is an even number. Therefore a2a^2 is an even number. When an odd number is squared, the result is always odd. Therefore aa must also be an even number.

    We see that the number aa must be even. We could call it 2a12a_1 to show this. Then

    a2=(2a1)(2a1)=4a12=2b2 a^2 = (2a_1)(2a_1) = 4a_1^2 = 2b^2

    Note: here a1a_1 is not the same variable as aa. Here a=2a1a = 2a_1. Writing a1a_1 is just a way to show that this variable is related to aa, but we could just as well have written xx instead of a1a_1:

    a2=(2x)(2x)=4x2=2b2 a^2 = (2x)(2x) = 4x^2 = 2b^2

    Remember: often people seem to say xx, yy, etc. when they mean a set or a range of possible values, and x1x_1, y0y_0, etc. when they mean a specific value in that set. See the line equations for examples.

    Continuing:

    4x2=2b22x2=b2 4x^2 = 2b^2 \\ 2x^2 = b^2

    Now, by the same argument as before, bb must also be even, so aa and bb could have been cancelled down.

    ab=2 \frac{a}{b} = \sqrt{2}

    If both aa and bb are even, then they could be factored and cancelled further, such that at least one of them would become odd, which would contradict either a2=2b2a^2 = 2b^2 or b2=2x2b^2 = 2x^2, since they say both aa and bb must be even.

    2/2=1/16/4=3/28/6=4/314/10=7/5etc. 2/2 = 1/1 \\ 6/4 = 3/2 \\ 8/6 = 4/3 \\ 14/10 = 7/5 \\ \text{etc.}

    But if we cancel them, we can use exactly the same argument to show that they would cancel down again, and so on for ever. So there is no fraction which is exactly equal to 2\sqrt{2}.

    Remember:

    • Rational numbers: ab\frac{a}{b}, where aa and bb are integers
    • Irrational numbers: π\pi, 2\sqrt{2}, and others that cannot be written as a rational number
    • Real numbers: a set of {Rational numbers,Irrational numbers}\{\text{Rational numbers}, \text{Irrational numbers}\}
    • Imaginary numbers: 4\sqrt{-4}, etc.
    • Complex numbers: a set of {Real numbers,Imaginary numbers}\{\text{Real numbers}, \text{Imaginary numbers}\}

    1.F.1

    101112=1+2+4+16=231011112=15101110112=6414=5910(1111112=641) 10111_2 = 1 + 2 + 4 + 16 = 23_{10} \\ 1111_2 = 15_{10} \\ 111011_2 = 64 - 1 - 4 = 59_{10} \qquad (111111_2 = 64 - 1)

    A way to convert from base-10 to other bases: continuously divide a number by the new base and keep track of the remainder. When the quotient is 0, the result is in the remainders (read bottom-up).

    10910109_{10} in base-10 is 109109:

    Quotient Base Remainder
    109 10
    10 10 9
    1 10 0
    0 10 1

    10910109_{10} in base-2 is 11011011101101:

    Quotient Base Remainder
    109 2
    54 2 1
    27 2 0
    13 2 1
    6 2 1
    3 2 0
    1 2 1
    0 2 1

    10910109_{10} in base-8 is 155155:

    Quotient Base Remainder
    109 8
    13 8 5
    1 8 5
    0 8 1

    Why does this work? It's a bit clearer when you add a column for the powers.

    Quotient Base Power Remainder
    13 2
    6 2 0^0 1
    3 2 1^1 0
    1 2 2^2 1
    0 2 3^3 1

    It's even easier to understand when you realize that the table method above is basically chopping off the least power of base-n in each step, and leaving you the next power.

    1234510_{10}  —>  10_{10}
        ^

    1234510_{10}  —>  8_{8}
        ^

    1234510_{10}  —>  2_{2}
        ^


    Many numbers can be written as products of smaller numbers.

    57=31954=227=69=318=336=2333 57 = 3 * 19 \\ 54 = 2 * 27 = 6 * 9 = 3 * 18 = 3 * 3 * 6 = 2 * 3 * 3 * 3

    Remember: numbers which have no factors other than themselves and 11 are called prime numbers.

    There is only one even prime number: 22. All other primes are odd.

    Every number can be written as a product of its prime factors.

    Every number can only be broken down into a product of prime factors in one way.

    These are the only prime factorisations for these two numbers — there are no other prime factorisations possible:

    57=31954=2333=233 57 = 3 * 19 \\ 54 = 2 * 3 * 3 * 3 = 2 * 3^3


    Square roots can be simplified with prime numbers. Factoring the number inside the square root into primes allows you to calculate the square roots of the factors.

    8=222=42=2254=2333=923=3627=323=323=33 \sqrt{8} = \sqrt{2 * 2 * 2} = \sqrt{4} * \sqrt{2} = 2\sqrt{2} \\ \sqrt{54} = \sqrt{2 * 3 * 3 * 3} = \sqrt{9} * \sqrt{2 * 3} = 3\sqrt{6} \\ \sqrt{27} = \sqrt{3^2 * 3} = \sqrt{3^2} * \sqrt{3} = 3\sqrt{3}

    Btw, can ab\sqrt{a * b} really be factored into ab\sqrt{a} * \sqrt{b}?

    16=42=4=44=(4)2=(22)=416=161/2=41/241/2=(41)=4=21/221/221/221/2=(22)=4 \sqrt{16} = \sqrt{4^2} = 4 = \sqrt{4}\sqrt{4} = (\sqrt{4})^2 = (2*2) = 4 \\ \sqrt{16} = 16^{1/2} = 4^{1/2} * 4^{1/2} = (4^1) = 4 = 2^{1/2} * 2^{1/2} * 2^{1/2} * 2^{1/2} = (2^2) = 4

    Looks like it:

    For all nonnegative real numbers x and y, xy=xy\sqrt{xy} = \sqrt{x}\sqrt{y}.

    1.F.3

    28=227=2745=335=3550=255=5244=2211=21163=337=3740=2225=225=210 \sqrt{28} = \sqrt{2 * 2 * 7} = 2\sqrt{7} \\ \sqrt{45} = \sqrt{3 * 3 * 5} = 3\sqrt{5} \\ \sqrt{50} = \sqrt{2 * 5 * 5} = 5\sqrt{2} \\ \sqrt{44} = \sqrt{2 * 2 * 11} = 2\sqrt{11} \\ \sqrt{63} = \sqrt{3 * 3 * 7} = 3\sqrt{7} \\ \sqrt{40} = \sqrt{2 * 2 * 2 * 5} = 2\sqrt{2}\sqrt{5} = 2\sqrt{10}

    Seems easiest to first try to divide by 2, then by 3, then by 5, etc. — i.e. by incrementally larger primes.


    Most square roots are irrational, the exception being perfect squares, like 2=42 = \sqrt{4} or 5=255 = \sqrt{25}. Irrational square roots are called surds.

    1.F.(d)

    (3+5)+(35)=6(3+5)(35)=3252=95=4(1+2)(12)=12=1 (3 + \sqrt{5}) + (3 - \sqrt{5}) = 6 \\ (3 + \sqrt{5})(3 - \sqrt{5}) = 3^2 - \sqrt{5}^2 = 9 - 5 = 4 \\ (1 + \sqrt{2})(1 - \sqrt{2}) = 1 - 2 = -1

    We can use the difference of two squares to simplify square roots in fractions.

    3252=(32)(5+2)(52)(5+2)=35+321023 \dfrac{3 - \sqrt{2}}{\sqrt{5} - \sqrt{2}} = \dfrac{(3 - \sqrt{2})(\sqrt{5} + \sqrt{2})}{(\sqrt{5} - \sqrt{2})(\sqrt{5} + \sqrt{2})} = \dfrac{3\sqrt{5} + 3\sqrt{2} - \sqrt{10} - 2}{3}

    This is called rationalising the denominator.

    1.F.4

    53+2=5(32)(3+2)(32)=15527 \dfrac{5}{3 + \sqrt{2}} = \dfrac{5(3 - \sqrt{2})}{(3 + \sqrt{2})(3 - \sqrt{2})} = \dfrac{15 - 5\sqrt{2}}{7}

    353+5=(35)(35)(3+5)(35)=93535+595=14654=7352 \dfrac{3 - \sqrt{5}}{3 + \sqrt{5}} = \dfrac{(3 - \sqrt{5})(3 - \sqrt{5})}{(3 + \sqrt{5})(3 - \sqrt{5})} = \dfrac{9 - 3\sqrt{5} - 3\sqrt{5} + 5}{9 - 5} = \dfrac{14 - 6\sqrt{5}}{4} = \dfrac{7 - 3\sqrt{5}}{2}

    3235+32=? \dfrac{3 - 2\sqrt{3}}{5 + 3\sqrt{2}} = \dots?

    (32)2=(3121/2)23(323)=9633(5+32)=15+922(323)=6432(5+32)=10+623(323)=3323=3362(5+32)=52+63(5+32)=53+323=53+35(5+32)(532)=25(32)(32)=2592 (3\sqrt{2})^2 = (3^1 * 2^{1/2})^2 \\ 3(3 - 2\sqrt{3}) = 9 - 6\sqrt{3} \\ 3(5 + 3\sqrt{2}) = 15 + 9\sqrt{2} \\ 2(3 - 2\sqrt{3}) = 6 - 4\sqrt{3} \\ 2(5 + 3\sqrt{2}) = 10 + 6\sqrt{2} \\ \sqrt{3}(3 - 2\sqrt{3}) = 3\sqrt{3} - 2*3 = 3\sqrt{3} - 6 \\ \sqrt{2}(5 + 3\sqrt{2}) = 5\sqrt{2} + 6 \\ \sqrt{3}(5 + 3\sqrt{2}) = 5\sqrt{3} + 3\sqrt{2}\sqrt{3} = 5\sqrt{3} + 3\sqrt{5} \\ (5 + 3\sqrt{2})(5 - 3\sqrt{2}) = 25 - (3\sqrt{2})(3\sqrt{2}) = 25 - 9*2

    I was unsure there if (ab)2=a2b(a\sqrt{b})^2 = a^2b, but it must be, since (ab)(ab)=abab=aabb=a2b2(ab)(ab) = abab = aabb = a^2b^2.

    3235+32=(323)(532)(5+32)(532)=1592103+6232592= \dfrac{3 - 2\sqrt{3}}{5 + 3\sqrt{2}} = \dfrac{(3 - 2\sqrt{3})(5 - 3\sqrt{2})}{(5 + 3\sqrt{2})(5 - 3\sqrt{2})} = \dfrac{15 - 9\sqrt{2} - 10\sqrt{3} + 6\sqrt{2}\sqrt{3}}{25 - 9*2} =

    1592103+667 \dfrac{15 - 9\sqrt{2} - 10\sqrt{3} + 6\sqrt{6}}{7}

    Remember: xy=xy\boxed{\sqrt{x}\sqrt{y} = \sqrt{xy}} (but x+yx+y\sqrt{x} + \sqrt{y} \neq \sqrt{x + y}).

    Remember: (ab)2=(ab)(ab)=abab=aabb=a2b2(ab)^2 = (ab)(ab) = abab = aabb = a^2b^2.